In space, there really might be no place like home

Robert Hazen

Robert Hazen

is a research scientist at the Carnegie Institution of Washington’s Geophysical Laboratory and professor of earth science at George Mason University. His latest book is The Story of Earth (2012).

700 words

Edited by Ed Lake

Republish
NASA
NASA

Robert Hazen

Robert Hazen

is a research scientist at the Carnegie Institution of Washington’s Geophysical Laboratory and professor of earth science at George Mason University. His latest book is The Story of Earth (2012).

700 words

Edited by Ed Lake

Republish
NASA
NASA

Robert Hazen

is a research scientist at the Carnegie Institution of Washington’s Geophysical Laboratory and professor of earth science at George Mason University. His latest book is The Story of Earth (2012).

700 words

Edited by Ed Lake

Republish

Few topics in science command as much attention as the discovery of extrasolar planets – those as-yet-unseen worlds, light years beyond our own Sun. In the quest to learn whether we are alone in the cosmos, astronomers are teasing out subtle wobbles and periodic dimmings of distant stars: telltale signs that a planet, much too faint to see directly in telescopes, is nevertheless present.

Alien giants, more massive than Jupiter, were the first to be discovered, whizzing around their nearby stars in frenetic orbits of a few days. Their great mass created the maximum possible stellar perturbations. But since we’ve passed the 20th anniversary of the discovery of the first exoplanet, the focus has shifted from behemoths to worlds more like Earth.

‘Earth-like’ evokes different meanings for different people. Astronomers tend to focus on three characteristics that they can confidently measure: radius, mass and orbit. Earth-like radii are inferred from the maximum dimming of the star as the planet eclipses a tiny fraction of its light, while mass can be calculated from the extent of stellar wobbling. Orbital parameters must place the planet within the ‘habitable zone’ – the donut-shaped volume of space where liquid water might persist at or near the planet’s surface. Growing numbers of discoveries – Kepler 186f, Kepler 438b, Kepler 452b (all identified by data from the Kepler space telescope) – approximate these astronomical constraints. Almost monthly headlines herald the most ‘Earth-like’ planet yet.

Those giddy articles usually fail to mention that radius, mass and orbit are, by themselves, rather poor indicators of Earth’s potential planetary twins. What’s missing is chemistry. The visible light from distant stars – data easily acquired with modest telescopes – reveals that these celestial objects differ widely in their chemical composition. Some stars have a lot more, or a lot less, magnesium or iron or carbon than our Sun. And it’s likely that those critical differences are mirrored, at least to some extent, in the makeup of their companion planets.

Element ratios matter. Recent studies by mineralogists and geochemists (including my own research team at the Carnegie Institution of Science) suggest that even small differences in composition might render a planet inhospitable to life. If there’s too much magnesium, then plate tectonics – the engine essential to life’s cycling of nutrients – can’t get started. Too little iron, and the planet never forms a magnetic field, which is necessary to protect life from lethal cosmic rays. Too little water or carbon or nitrogen or phosphorus, and life fails.

So what are the chances of finding another Earth? With more than a dozen key chemical elements, the likelihood of replicating all the critical compositional parameters is small – perhaps only 1 in 100 or 1 in 1,000 ‘Earth-like’ planets will be compositionally similar to Earth. Nevertheless, with a conservative estimate of 1020 planets similar to Earth in radius, mass and orbit, countless worlds must be rather like our own.

And that realisation should give us pause. It’s only human to want to find planetary partners that remind us of Earth, just as we seek friends and lovers who share our tastes, our politics, our beliefs. But to stumble across someone (other than an identical twin) who is exactly like us in every respect – dresses the same, has the same profession and hobbies, uses the exact same idiosyncratic phrases and body language – would be a little creepy. In the same way, I think we’d find it disturbing to discover a clone planet.

Not to worry; it isn’t going to happen. Consider Earth’s mineralogy. Our recent research reveals that, while the Earth’s crust is packed with minerals common to any likely exoplanet, most mineral species are rare. It would be virtually impossible to replicate mineralogical details on another Earth-like planet. And if Earth’s inanimate mineralogy is unique in the cosmos, then Earth’s biology is surely even more distinctive. So, as we confidently search for ever more ‘Earth-like’ planets, we can be equally confident that there is only one Earth. 

Republish

Robert Hazen

is a research scientist at the Carnegie Institution of Washington’s Geophysical Laboratory and professor of earth science at George Mason University. His latest book is The Story of Earth (2012).

aeon.co
Get Aeon straight
to your inbox
Join our newsletter Sign up
Follow us on
Facebook
Like

‘Aeon is what readers and writers dream about. It is wide in scope, without ever being shallow. It offers stimulating issues, yet never seeking to be tantalising.

Publishing at its best. I love it.’

Professor Luciano Floridi, University of Oxford

‘Every morning I look forward to seeing what’s in your email and there isn’t a day that goes by without reading or watching something you guys have published.

It’s like an oasis of sanity in a world gone mad.’

Jack D, USA, Friend of Aeon

‘Aeon is hands down my favourite publication to write for. Deadlines long enough to do the work justice, the best editorial input I’ve encountered and compensation which is respectful of writers’ time.’

Antonia Malchik, essayist and editor

‘Aeon is consistently the place to find excellent, provocative and thoughtful writing.

One of my favourite places to find new writers and new ideas.’

Professor Sophie Kerttu Scott, University College London

‘I read one article and decided that I wanted to support an organisation that promotes critical thinking around ideas that affect our everyday lives.’

John T, Canada, Friend of Aeon

Aeon is a registered charity committed to the spread of knowledge. Our mission is to create a sanctuary online for serious thinking.
But we can’t do it without you.

Aeon is a registered charity committed to the spread of knowledge and a cosmopolitan worldview.
But we can’t do it without you.

Essay/
History of Science
Behold: science as seeing

One astronomer’s dimpled pie is another’s cratered moon. How can our mind’s eye learn to see the new and unexpected?

Gene Tracy

Essay/
Neuroscience
The cerebral mystique

Neuroscience gives us invaluable, wondrous knowledge about the brain – including an awareness of its limitations

Alan Jasanoff